
Lecture 5 - 1/30/2024 Last Updated 1/20/2024---------------------
Java is a strongly typed language, meaning that we must denote all
variables we declare with a type. These types can be grouped into two
broad categories:

1. Primitive Data Types
2. Non Primitive Data Types

You are already familiar with the following data types from previous
lectures:

1. int - Uses 4 bytes of memory
2. double - Uses 8 bytes of memory
3. boolean - Uses 1 byte of memory

You do not need to worry about the amount of memory allocated for each
type just yet it will be repeated in a later set of notes, just stating it
here for completeness.

To declare a variable in Java - in the generic* sense - we can use the
following format:

dataType variableName;

To initialize a variable in Java we can go to a separate line and do the
following:

variableName = valueOfVariable;

But we do not have to do both of these separately we can combine this into
a single line which yields the following:

dataType variableName = valueOfVariable;

The data type matters because it influences the output of mathematical
operations, let us consider the same operation with one as a double and
one an int:

int x = 5;
double y = 5;
System.out.println(x / 2 + “,” + y / 2); //yields 2,2.5

Even though y and x hold the same value (5) the nature of doubles being
capable of floating point arithmetic means we will have a decimal
component to the answer.

The native library of Java, which includes everything you can use out of
the box comes from the java.lang package. This package is imported for you
so you do not need to worry about importing it yourself. That being said,
sometimes we may want to gain access to extra functionality and we can do
this by writing import statements at the top of our .java files.

For instance, considering the question of user input, there is no simple
way to do that with the native java library so to do so we import another
class to help us out with that. In particular we import the Scanner class:

import java.util.Scanner;

From this we now have access to the Scanner class, if instead of importing
a single class from a package you want to import multiple classes from the
same package then you can replace the class name with the wildcare (*)

import java.util.*;

Now let us turn our attention back to the Scanner class, it is essential
for collecting user input. In order to use a Scanner we must instantiate
an instance of it. To do so we can write the following:

Scanner sc = new Scanner(System.in);
^ ^ ^ ^ ^
| | | | |
a b c d e

It is important to understand what all of this means so let’s break it
down:

a. Scanner: This is the name of the Class we wish to make an instance of
b. sc: This is the name of the reference that we will be using to access

the properties of the Scanner, it is the name of our variable.
c. new: This is a reserved keyword in Java used for all* object

instantiations (*there are exceptions like Strings)
d. Scanner(): This is a constructor call, you will learn more about

constructors later but for now just bookmark this detail
e. System.in: This is the argument to the constructor.

Once again this process is referred to as object instantiation, with
objects being instances of classes, you can either use predefined classes
to make objects (like we did with the Scanner class) or you can make
objects from your own classes! The following is a generic* version of the
previous line of code:

ClassName variableName = new ClassName(argument1, … , argumentN);

For the record you do not actually need to have arguments for your
constructor, it really depends on how the constructor is defined.

Once we have a Scanner object we can collect different types of input from
the user using the following methods:

1. int x = sc.nextInt();
2. double x = sc.nextDouble();
3. String x = sc.nextLine();
4. String x = sc.next();

We typically have a println prior to collecting input so the user has a
prompt to work with, so if you are working and try running and get a blank
terminal, consider adding a prompt if you do not already have one.

Also number 3 and 4 vary slightly, so please reference the Scanner class’s
documentation for more information: (Scanner Class: Java 8)

Lecture 6 - 2/1/2024--------------------
I see plenty of you typing your notes within the Java files that are being
used in lecture and plenty of you are using single line comments as
follows:

// I am a single line comment

Multilined comments also exist within java meaning you do not need to
write // each time you want to jot down some notes:

/*
* This is a multi line comment
*/

https://docs.oracle.com/javase/8/docs/api/java/util/Scanner.html

Today you saw the classic game of Rock Paper Scissors in Java and there
were a few new concepts that were introduced.

The first was the concept of constants. In Java we can denote variables
with the final keyword turning them into constants, we use the keyword
prior to the data type, when writing out the variable name for constants
the convention is to type the name in all caps with underscores separating
individual words. Here is an example illustrating this:

final int MY_FIRST_CONSTANT = 42;

The second was the random() method from the Math class. The Math class is
native to Java so you do not need to import it. The Math class has tons of
different constants and methods that are all very useful but will be
omitted from discussion as there is no legitimate reason to go down that
rabbit hole. You can read the documentation here: (Math Class: Java 8).

Math.random()returns a double that can hold any floating point value
across the following range: [0.0, 1.0) for a reminder on the notation,
this is saying we can get values starting from 0.0 and going up to but not
including 1.0, this allows us to generate random numbers and perform
actions based on chance and probability rather than discretely defined
values. We can manipulate the range using multiplication and
addition/subtraction.

Finally you were introduced to Type Casting, this is different from Type
Promotion which happens naturally by the JVM, casting is a user’s choice
and when desired, can yield necessary and proper results but also could
lead to errors if you are not careful. To cast to a different type you
simply put (datatype) in front of an expression, be careful for the order
of precedence as well, as you may get undesirable output, when in doubt
use parentheses to denote intention.

https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

